skip to main content


Search for: All records

Creators/Authors contains: "Yuan, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A quantum anomalous Hall (QAH) insulator is a topological phase in which the interior is insulating but electrical current flows along the edges of the sample in either a clockwise or counterclockwise direction, as dictated by the spontaneous magnetization orientation. Such a chiral edge current eliminates any backscattering, giving rise to quantized Hall resistance and zero longitudinal resistance. Here we fabricate mesoscopic QAH sandwich Hall bar devices and succeed in switching the edge current chirality through thermally assisted spin–orbit torque (SOT). The well-quantized QAH states before and after SOT switching with opposite edge current chiralities are demonstrated through four- and three-terminal measurements. We show that the SOT responsible for magnetization switching can be generated by both surface and bulk carriers. Our results further our understanding of the interplay between magnetism and topological states and usher in an easy and instantaneous method to manipulate the QAH state. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    Over the last decade, the possibility of realizing topological superconductivity (TSC) has generated much excitement. TSC can be created in electronic systems where the topological and superconducting orders coexist, motivating the continued exploration of candidate material platforms to this end. Here, we use molecular beam epitaxy (MBE) to synthesize heterostructures that host emergent interfacial superconductivity when a non-superconducting antiferromagnet (FeTe) is interfaced with a topological insulator (TI) (Bi, Sb)2Te3. By performing in-vacuo angle-resolved photoemission spectroscopy (ARPES) and ex-situ electrical transport measurements, we find that the superconducting transition temperature and the upper critical magnetic field are suppressed when the chemical potential approaches the Dirac point. We provide evidence to show that the observed interfacial superconductivity and its chemical potential dependence is the result of the competition between the Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling mediated by Dirac surface states and antiferromagnetic exchange couplings that generate the bicollinear antiferromagnetic order in the FeTe layer.

     
    more » « less
  3. To date, the quantum anomalous Hall effect has been realized in chromium (Cr)- and/or vanadium(V)-doped topological insulator (Bi,Sb)2Te3 thin films. In this work, we use molecular beam epitaxy to synthesize both V- and Cr-doped Bi2Te3 thin films with controlled dopant concentration. By performing magneto-transport measurements, we find that both systems show an unusual yet similar ferromagnetic response with respect to magnetic dopant concentration; specifically the Curie temperature does not increase monotonically but shows a local maximum at a critical dopant concentration. We attribute this unusual ferromagnetic response observed in Cr/V-doped Bi2Te3 thin films to the dopant-concentration-induced magnetic exchange interaction, which displays evolution from van Vleck-type ferromagnetism in a nontrivial magnetic topological insulator to Ruderman–Kittel–Kasuya–Yosida (RKKY)-type ferromagnetism in a trivial diluted magnetic semiconductor. Our work provides insights into the ferromagnetic properties of magnetically doped topological insulator thin films and facilitates the pursuit of high-temperature quantum anomalous Hall effect. 
    more » « less
  4. Abstract The discovery of two-dimensional (2D) ferromagnets and antiferromagnets with topologically nontrivial electronic band structures makes the study of the Nernst effect in 2D materials of great importance and interest. To measure the Nernst coefficient of 2D materials, the detection of the temperature gradient is crucial. Although the micro-fabricated metal wires provide a simple but accurate way for temperature detection, a linear-response assumption that the temperature gradient is a constant is still necessary and has been widely used to evaluate the temperature gradient. However, with the existence of substrates, this assumption cannot be precise. In this study, we clearly show that the temperature gradient strongly depends on the distance from the heater by both thermoelectric transport and thermoreflectance measurements. Fortunately, both measurements show that the temperature gradient can be well described by a linear function of the distance from the heater. This linearity is further confirmed by comparing the measured Nernst coefficient to the value calculated from the generalized Mott’s formula. Our results demonstrate a precise way to measure the Nernst coefficient of 2D materials and would be helpful for future studies. 
    more » « less
  5. null (Ed.)
  6. Abstract

    In 2019 September, a sudden flare of the 6.7 GHz methanol maser was observed toward the high-mass young stellar object (HMYSO) G24.33+0.14. This may represent the fourth detection of a transient mass accretion event in an HMYSO after S255IR NIRS3, NGC 6334I-MM1, and G358.93−0.03-MM1. G24.33+0.14 is unique among these sources as it clearly shows a repeating flare with an 8 yr interval. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we observed the millimeter continuum and molecular lines toward G24.33+0.14 in the pre-flare phase in 2016 August (ALMA Cycle 3) and the mid-flare phase in 2019 September (ALMA Cycle 6). We identified three continuum sources in G24.33+0.14, and the brightest source, C1, which is closely associated with the 6.7 GHz maser emission, shows only a marginal increase in flux density with a flux ratio (Cycle 6$/$Cycle 3) of 1.16 ± 0.01, considering an additional absolute flux calibration uncertainty of $10\%$. We identified 26 transitions from 13 molecular species other than methanol, and they exhibit similar levels of flux differences with an average flux ratio of 1.12 ± 0.15. In contrast, eight methanol lines observed in Cycle 6 are brighter than those in Cycle 3 with an average flux ratio of 1.23 ± 0.13, and the higher excitation lines tend to show a larger flux increase. If this systematic increasing trend is real, it would suggest radiative heating close to the central HMYSO due to an accretion event which could expand the size of the emission region and/or change the excitation conditions. Given the low brightness temperatures and small flux changes, most of the methanol emission is likely to be predominantly thermal, except for the 229.759 GHz (8−1–70 E) line known as a class I methanol maser. The flux change in the millimeter continuum of G24.33+0.14 is smaller than in S255IR NIRS3 and NGC 6334I-MM1 but is comparable with that in G358.93−0.03-MM1, suggesting different amounts of accreted mass in these events.

     
    more » « less